Bounds for Incidence Energy of Some Graphs
نویسندگان
چکیده
منابع مشابه
Bounds for Incidence Energy of Some Graphs
LetG be a finite, simple, and undirected graphwith n vertices. Thematrix L(G) = D(G)−A(G) (resp., L+(G) = D(G)+A(G)) is called the Laplacianmatrix (resp., signless Laplacianmatrix [1–4]) of G, where A(G) is the adjacency matrix and D(G) is the diagonal matrix of the vertex degrees. (For details on Laplacian matrix, see [5, 6].) Since A(G), L(G) and L+(G) are all real symmetric matrices, their e...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملSome upper bounds for the energy of graphs
LetG = (V, E)be a graphwith n vertices and e edges.Denote V (G) = {v1, v2, . . . , vn}. The 2-degree of vi , denoted by ti , is the sum of degrees of the vertices adjacent to vi , 1 i n. Let σi be the sum of the 2-degree of vertices adjacent to vi . In this paper, we present two sharp upper bounds for the energy of G in terms of n, e, ti , and σi , from which we can get some known results. Also...
متن کاملSome Lower Bounds for Laplacian Energy of Graphs
We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow that in [1]. Let G be a graph of order n and size m. We assume that d1, d2, ..., dn, where di, 1 ≤ i ≤ n, is the degree of vertex vi in G, is the degree sequence of G. We define Σk(G) as ∑n i=1 d k i . For each vertex vi, 1 ≤ i ≤ n, mi is defined as the sum of degrees of v...
متن کاملrandic incidence energy of graphs
let $g$ be a simple graph with vertex set $v(g) = {v_1, v_2,ldots, v_n}$ and edge set $e(g) = {e_1, e_2,ldots , e_m}$. similar tothe randi'c matrix, here we introduce the randi'c incidence matrixof a graph $g$, denoted by $i_r(g)$, which is defined as the$ntimes m$ matrix whose $(i, j)$-entry is $(d_i)^{-frac{1}{2}}$ if$v_i$ is incident to $e_j$ and $0$ otherwise. naturally, therandi'c incidenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/757542